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Alternative polyadenylation (APA) enables a gene to generate multiple transcripts with different 3′ ends, which is dynamic

across different cell types or conditions. Many computational methods have been developed to characterize sample-specific

APA using the corresponding RNA-seq data, but suffered from high error rate on both polyadenylation site (PAS) iden-

tification and quantification of PAS usage (PAU), and bias toward 3′ untranslated regions. Here we developed a tool for

APA identification and quantification (APAIQ) from RNA-seq data, which can accurately identify PAS and quantify

PAU in a transcriptome-wide manner. Using 3′ end-seq data as the benchmark, we showed that APAIQ outperforms cur-

rent methods on PAS identification and PAU quantification, including DaPars2, Aptardi, mountainClimber, SANPolyA,

and QAPA. Finally, applying APAIQ on 421 RNA-seq samples from liver cancer patients, we identified >540 tumor-asso-

ciated APA events and experimentally validated two intronic polyadenylation candidates, demonstrating its capacity to un-

veil cancer-related APA with a large-scale RNA-seq data set.

[Supplemental material is available for this article.]

In eukaryotes, the transcription termination is mediated by cleav-
age of the nascent RNA and followed by the synthesis of non-geno-
mic-templated polyadenosines (poly(A)) to the 3′ end of the RNA,
which is known as polyadenylation. This process is controlled by a
set of RNA-binding proteins (RBPs) that recognizes cis elements
surrounding the polyadenylation site (PAS). The PAS motif, a hex-
amer located 15–40 nt upstream of the cleavage site, is one of the
most important core elements for PAS definition (Proudfoot and
Brownlee 1976). PAS motifs include AAUAAA that is present in
more thanhalf of the PASs, and its variants (AUUAAAet al.), which
have been found in nearly 80% of the remaining PASs in the hu-
man andmouse genome (Tian et al. 2005). Other elements located
within 100 base-pair (bp) flanking PASs also contribute to the for-
mation of polyadenylation (Hu et al. 2005).

Mostmammalian genes usemultiple sites for polyadenylation,
a phenomenon termed alternative polyadenylation (APA), to gener-
ate RNA isoforms with different 3′ ends. For instance, >70% of hu-
man genes and 60% of mouse genes use multiple PASs (Derti et al.

2012; Xiao et al. 2016). This APAmechanismnot only enables a sin-
gle gene to encode multiple protein isoforms but also greatly in-
creases the complexity of gene expression regulations via different
3′ untranslated regions (3′ UTRs) at the terminal exon. The choice
of using a different PAS for each gene is distinct across different
cell types. For instance, cells in the brain tissue tend to use the distal
PAS to generate long isoforms, whereas proliferating cells prefer
short isoforms by using proximal PASs (Sandberg et al. 2008;
Miura et al. 2013).Moreover, even for the same type of cells, APA al-
terations have also been observed under different conditions or
upon stimulation (Chang et al. 2015; Zheng et al. 2018).

Dysregulation of APA could be associatedwith human diseases,
including cancer. It has been shown that APA-mediated 3′ UTR
shortening could activate oncogene expression via escaping from
microRNA regulation, whereas RNA transcripts with shortened 3′

UTRs could also inhibit other transcripts from tumor suppressor
by disrupting the competition for shared microRNA binding (Mayr
and Bartel 2009; Park et al. 2018). Therefore, it is of the utmost inter-
est to identify the expressed/used PASs and quantify their usages for
each gene in different cells and samples. Numerous computational11These authors contributed equally to this work.
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methods have been developed to predict PASs solely based on DNA
sequence (Cheng et al. 2006;Xie et al. 2013;Xia et al. 2019), but they
are very unlikely to accurately identify sample-specific APA simply
because different cells share almost the identical DNA sequence.
On the other hand, experimental technologies have been developed
for the identification and quantification of sample-specific APA
events in a transcriptome-wide manner by enriching the 3′ end of
RNA transcripts, followed by high-throughput sequencing (3′ end-
seq), such as 3P-seq, Aseq, Poly(A)-seq, and 3′ READS (Jan et al.
2011; Derti et al. 2012; Martin et al. 2012; Hoque et al. 2013).
However, these methods are rather laborious, and more time and/
or material consuming compared to conventional RNA sequencing
(RNA-seq). More importantly, 3′ end-seq data are almost impossible
to be used for studying other post-transcriptional RNA processes be-
yond APA, such as splicing and RNA editing.

Accordingly, many tools have also been developed for the
identification and quantification of APA based on RNA-seq data.
Almost all of them are designed to detect the drops in RNA-seq
read coverage along the gene body. However, due to high fluctua-
tion of the sequencing coverage potentially caused by heteroge-
nous reads mappability, as well as biased amplification efficiency
of different RNA fragments during sequencing library preparation,
these methods tend to suffer from high false positive rates and
low recall on PAS identification. A recent study benchmarking
multiple computational tools for APA analysis, including TAPAS
(Arefeen et al. 2018), QAPA (Ha et al. 2018), DaPars2 (Li et al.
2021), GETUTR (Kim et al. 2015), and APATrap (Ye et al. 2018), us-
ing 3′ end-seq and Pacific Biosciences (PacBio) Iso-Seq data, found
that essentially none of them could achieve 50% recall, whereas
the false positive rate (FPR) ranges from 30% to 50% (Shah et al.
2021). In addition, these computational methods mainly focus
on APA within 3′ UTR. This might be due to the fact that drop of
RNA-seq coverage across exon–intron boundaries impacts their
detection of splicing-coupled APA, such as intronic polyadenyla-
tion (IPA).Nevertheless, it has been reported that IPA iswidespread
in leukemia to inactivate tumor suppressor by generating truncat-
ed protein isoforms (Lee et al. 2018).

Recently, IPAFinder that specifically identifies IPA and com-
pares its usage between two conditions from RNA-seq has been de-
veloped (Zhao et al. 2021b). However, a method for comprehensive
PAS identification at transcriptome remains largely an unmet need.
In addition to PAS identification, current methods for APA quanti-
fication also have substantial error rates and they usually rely on the
annotation of UTR and PAS in the database, such as QAPA and
APAlyzer (Ha et al. 2018; Wang and Tian 2020). To date, the most
comprehensive PAS annotation data sets, including PolyA_DB and
PolyASite, are mainly derived from common cell lines or tissues
(Wang et al. 2018; Herrmann et al. 2020). There might be tremen-
dous unannotated PASs used in less explored biological samples,
such as primary tumor samples from individual patients.

Here, to address the above-mentioned limitations, we devel-
oped APAIQ, a computational tool that is capable of sample-specif-
ic APA identification and quantification (APAIQ) from RNA-seq
data in a transcriptome-wide manner.

Results

Identification and quantification of APA from RNA-seq

data with APAIQ

APAIQ integrates coverage information from RNA-seq data with
genomic sequence through a convolutional neuron network

(CNN). It contains two modules, including one for PAS identifica-
tion and another one that is a regression model for the quantifica-
tion of expression based on the coverage around the identified or
provided PAS position. For PAS identification, a hybrid deep-learn-
ing model taking RNA-seq read coverage and DNA sequence was
first implemented to predict PAS score at each genomic locus, fol-
lowed by a customized postprocessing strategy to identify accurate
PAS position. To quantify the expression of transcripts using each
PAS, a regressionmodel was further trained by taking RNA-seq cov-
erage at its flanking regions (−500 bp to 500 bp) as independent
variables/covariates and the expression quantified by 3′ end-seq
as dependent variable/response (Methods; Fig. 1A).

We performed RNA 3′ end-seq (QuantSeq 3′ mRNA-seq, Lex-
ogen) on four cell lines, including K562, HepG2, THLE2, and
SNU398, to comprehensively characterize the expressed/used
PAS in these four samples, respectively. To avoid internal prim-
ming potentially caused by the 3′ end-seq, we only used the anno-
tated PAS from GENCODE and PolyA_DB (v3) that is derived from
3′ READS, which claimed to have the ability to overcome the inter-
nal primming problem (Hoque et al. 2013). An average of 20,335
PASs in each cell line with a sufficient expression level (reads per
million [RPM]>0.1 and PAU>0.05) was identified (Methods), in
which 10,382 PASs were commonly used among the four cell lines
and each cell line has 3500–4000 sample-specific PASs (Fig. 1B).
Among the 35,395 PASs expressed in at least one cell line,
35,064 are located within 14,959 protein-coding genes (without
any extension), in which 58.9% of the genes use multiple PASs
(Fig. 1C). We noted that the RNA-seq read coverage indeed tended
to drop downstream from these PASs compared to the upstream re-
gions (Supplemental Fig. S1A). In addition, 87% of the used PASs
have canonical PAS motif (AAUAAA) and its variants are located
within 100 bpupstreamof the cleavage site, whereas the frequency
is only ∼20% in the same number of randomly selected genomic
loci are at least 50 bp away from any annotated PAS (Supplemental
Fig. S1B). These suggested that both RNA-seq read coverage and
DNA sequence contain useful information for distinguishing
true used PASs from the background.

APAIQ predicts PAS accurately in a genome-wide manner

We first built a binary classification model by integrating RNA-seq
coverage and DNA sequence. Using the expressed/used PASs in
each cell line as the positive data set, and the same number of ran-
domly selected genomic loci (see definition above) as the negative
data set (Methods), we trained amodel for binary classification. To
evaluate the performance, we applied a cross-validation approach,
in which we trained themodel using 4/5 of the data sets andmade
predictions on the rest. As expected, the integratedmodel achieved
96%TPR/recall with false positive discovery rate (FDR) <7%,which
is better than the model that used only RNA-seq coverage (cover-
age-only) and slightly better than the model that used only DNA
sequence (sequence-only) (Supplemental Table S1). It is notewor-
thy that the sequence-only model achieves a performance similar
to that of the integrated model, possibly due to the fact that the
negative data set consists of the random regions rather than the
unused/unexpressed PASs in each cell line.

Although the model achieves good performance in distin-
guishing true PASs from random genomic loci, PAS identification
at the whole genome remains challenging because even a very low
false positive rate would result in a huge number of false positive
predicted loci. For instance, among 3 billion loci in the human ge-
nome, only around 20,000 of themwere defined as expressed/used
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PASswith sufficient expression level in each single cell line. To fur-
ther reduce the false positive rate, we developed an enhancedmod-
el for genome scanning by introducing three strategies. We first
limited the loci for the prediction by requiring the average of
RNA-seq coverage at its upstream 100 bp to be higher than RPM
of 0.1. In this way, we reduced the total number of scanning loci
from3 billion to severalmillion. Second,we introduced a data aug-
mentation strategy to increase the complexity of the training data
set by randomly shifting several bp from true PAS (−12 bp to 12 bp)
to augment the positive data set. Finally, we implanted a circular-
training-based method, in which we repeatedly replaced the nega-
tive data set by the false positive predictions from the previous
round, which further increased the power of the model to distin-
guish positive from negative PAS (Fig. 1A; Methods).

With the enhanced model using these three strategies, we
made predictions at each locus in each sample and got a raw pre-
diction score ranging from 0 to 1 that represented the probability
of a locus to be a truly used/expressed PAS in this sample. As we
considered the locus at the vicinity of each true PAS as positive dur-
ing data augmentation, the prediction score at these loci could also
be relatively high. Accordingly, we designed a postprocessing strat-

egy by scanning the prediction scores to pinpoint the final posi-
tions of the true PAS. In this way, we were able to accurately
pinpoint the final PAS position (Fig. 1A; Methods). At the end,
our model was able to identify ∼70% of true PAS (overlapped
with predicted PAS within 25 bp) and >80% of the PAS identified
by APAIQ was located within 25 bp away from the annotated
PAS (3′ end-seq RPM>0), suggesting that our method achieves
both high recall and precision (72.4% with PAS from the ground
truth in average) for PAS identification (Fig. 2A). As expected, we
also found that the PAS with higher expression levels has higher
probabilities to be identified. For instance, >80% of PASs with rela-
tively high expression level (RPM>5, PAU>0.05) were successfully
identified (Fig. 2B). Even though 20%–30%of the PASwe identified
are not from the ground truth, almost half of them (10%–15% of
the total identified PASs) are still annotated (within 25 bp), but
the expression levels did not pass our threshold (Fig. 2C). Overall,
∼85% of the predictions are PAS detected by 3′ end-seq.

As shown in Figure 2D, as an example, there aremore than 19
annotated PASs from gene ELP5. However, only one was ex-
pressed/used in K562 and THLE2, and two of them were ex-
pressed/used in HepG2 and SNU398 according to the 3′ end-seq

A

B C

flattening & ReLU

flattening & ReLU

augmentation

postprocessing

Figure 1. A hybrid deep-learning model for PAS identification. (A) A schematic illustration of the framework of APAIQ. (B) Venn diagram shows the num-
ber of PASs with sufficient expression level in each cell line and their overlaps. (C ) Numbers of genes with different numbers of the identified PAS.
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data. Our model successfully identified them in each cell line, in-
cluding an intronic PAS that is specifically expressed/used in
HepG2 and SNU398 (ELP5-i1). The IPA has also been identified
by IPAFinder in a previous study (Zhao et al. 2021b), indicating
the high reliability of this PAS. To be noted, solely using 3′ end-
seq data enabled the identification of these two sample-specific
APA events, whereas it was impossible to distinguish isoform
ELP5-i3 from ELP5-i2 because they used the same terminal PAS,
whereas ELP5-i2 has a retained intron (Fig. 2D). In comparison,
by applying APAIQ on RNA-seq data, we could not only identify
these two PASs but also retain the ability to determine the splicing
patterns of different isoforms, which further highlighted the pow-
er of APAIQ in the study of APA coupled with other post-transcrip-
tional RNA processes, such as splicing.

APAIQ outperforms current methods on PAS identification

Next, we compared APAIQ with several publicly available methods,
including Aptardi, DaPars2, mountainClimber, and SANPolyA
(Cass and Xiao 2019; Yu and Dai 2020; Li et al. 2021; Lusk et al.
2021), by using our 3′ end-seq data as the benchmark. All these
methods were published recently, and they represented different
strategies for the identification of PASs, including purely using

RNA-seq coverage, DNA sequence, as well as using both coverage
and sequence. Among them, DaPars2 and mountainClimber were
based on the drops in RNA-seq read coverage, whereas SANPolyA
used only DNA sequence and Aptardi used a deep-learning frame-
work with both RNA-seq coverage and DNA sequence features. As
SANPolyA was designed for binary classification only, for fair com-
parisons, we applied our postprocessing strategy to enable it also
for genome-wide scanning. First, we performed a simple compari-
son by using the top 10,000 predictions from each method. We
found that APAIQ captured the highest number of true PASs and
the distance between the predictions and the ground truth ismainly
within 25bp.Aptardi ranks as the second if the threshold of distance
is set to 100 bp (Fig. 3A). As these twomethods shared a similar strat-
egy, this result suggests that using deep-learning and integrating
RNA-seq coverage andDNAsequence could greatly improve the per-
formance compared with other traditional methods.

Next, we used 25 bp to the ground truth as the distance
threshold to calculate recall, FPR, and precisions for more compre-
hensive evaluation (SupplementalMethod S1). As shown in Figure
3B, none of the used published methods achieved 60% recall with
10% FPR, which is consistent with the recent study that bench-
marked computational methods for APA analysis based on
3′ end-seq and Iso-Seq data (Shah et al. 2021). As Aptardi scanned

A B

C D

Figure 2. APAIQ predicts PAS comprehensively and accurately. (A) Proportion of the predicted PAS within different distances from the PAS in the ground
truth. (B) The proportion of PAS above different expression thresholds that have been identified by APAIQ. (C ) Barplot showing the number of the identified
PASs that are not overlapped with ground truth divided into four categories. (D) Genome Browser illustrating the predicted PAS and the PAS identified by 3′
end-seq in four cell lines.
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PAS at a 300 bp windowwith a 100 bp stepwise, we further relaxed
the distance threshold to 100 bp to the ground truth for the eval-
uation. In this way, Aptardi exhibited a much better performance,
whereas its recall was still much lower (∼20% lower) than APAIQ
with the same FPR, and the same hold (∼10% lower) for

SANPolyA method coupled with our postprocessing strategy. As
both Aptardi and DaPars2 were designed for APA analysis within
the last exon, we further evaluated them by only using the PAS
within the terminal exon. Again, APAIQ has the highest recall
with the same FPR (Supplemental Fig. S1C).

A B

DC

E F

not predicted

DaPars2
extend

terminal_exon

Figure 3. APAIQ outperforms other methods on PAS identification. (A) Number of the top 10,000 predicted PASs within different distances from the PAS
in the ground truth. (B) ROC curves showing the performance of the APAIQ and four other published methods, including Aptardi, DaPars2,
mountainClimber, and SANPolyA. (C) Venn diagram showing the number of true positives predicted by APAIQ and the four published methods. The num-
ber of overlaps between APAIQ and Aptardi, APAIQ, and SANPolyAwere indicated by arrows. (D) Different categories of the PAS identified by APAIQ. (E) An
example showing that the IPA eventwas successfully identified by APAIQ, but not the other threemethods. (F ) Genome Browser showing predictions of PAS
from the genesDKK1 based on the hybrid model integrating DNA sequence and RNA-seq coverage, the model only using DNA sequence (sequence-only),
and the model only using RNA-seq coverage (coverage-only).
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We further analyzed the true positive (TP) predictions of the
fivemethods and found that 18.4%of the PASs in the ground truth
were not found by any method. As expected, among those TP spe-
cifically predicted by eachmethod, APAIQ has the highest number
(1646), followed by Aptardi (1126). Both the TP predicted by
Aptardi and SANPolyA are highly overlapped with APAIQ, indicat-
ing high consistencies between the deep-learning-based methods
(Fig. 3C). Moreover, we classified the PASs into seven categories
based on their genomic localization, including terminal exon (in-
cluding 3′ UTR), upstream exonic regions, intronic regions, tran-
scription start site (TSS) upstream antisense, extended regions,
ncRNA, and intergenic regions. Similar to the previous study
(Xiao et al. 2016), PAS located within the terminal exon was the
most abundant category (73.7%), followed by intronic PAS
(17.0%). We found that APAIQ was able to identify PAS from all
these categories, whereas PAS from the terminal exon and intronic
region has the highest identification rates (Fig. 3D), indicating a
higher generalization ability compared to other methods that
only focus on 3′ UTR. We also checked the precision of the predic-
tions in each category region and found that the precision for PAS
from terminal exons is above 0.8 and precisions for PAS fromother
genic regions, including intron, upstream exon, and ncRNA, are
around 0.6 (Supplemental Fig. S1D). Moreover, the frequency of
AAUAAA and other poly(A) signal motifs upstream of the predict-
ed PAS are quite consistent across different types of regions, with
∼50% of them containing AAUAAA, and 80% containing at least
one poly(A) signalmotif (Supplemental Fig. S1E). PAS fromTSS up-
stream antisense, extended regions, and intergenic regions have
relatively low precisions and motif frequency, which might be
due to unstable and low expression of RNA products using these
PASs. However, this would not impact the general APA analysis,
whichmainly focuses on PAS fromgenic regions. Finally, as shown
in Figure 3E, only APAIQwas able to successfully identify two PASs
from intronic regions of gene NAXE.

Synergistic effect of RNA-seq read coverage and DNA sequence

on PAS identification

To dissect the contribution of RNA-seq read coverage and DNA
sequence to the model, we also compared the integrated model
with the coverage-only and the sequence-only models. We found
that using two features not only improved precision but also re-
duced false positive predictions (Supplemental Fig. S1F). As shown
in Figure 3F, the sequence-only model identified several annotated
PASs from gene DKK1 that are not expressed/used at all, whereas
when adding RNA-seq coverage features, the integrated model suc-
cessfully discarded those unused PASs. Another examplewas shown
in Supplemental Figure S1G, inwhich using only RNA-seq coverage
falsely identified two PASs fromgeneACOT2 due to the drop of cov-
erage, whereas they were successfully excluded by the integrated
model. In addition, a proximal PAS from gene PHKB truly used in
SNU398 was identified by neither the sequence-only nor the
coverage-only model, but was successfully detected by the integrat-
ed model (Supplemental Fig. S1H), further demonstrating a syner-
gistic effect by combining these two features together for PAS
identification.

High transferability of APAIQ across different cell lines,

species, and data sets

To examine whether APAIQ could be applied to samples differing
from that used in the training data set, we tested the transferability
of our model across different cell lines. Alternately, we trained the

model in each of the four cell lines, made predictions on the other
three cell lines, and then compared their performances to that in
this cell line. We found that the predictions across different cell
lines could still achieve a similar recall and precision as that over
data from the same cell line (Supplemental Fig. S2A,B). To further
test whether APAIQ could be even applied across different species,
we tested the model on a data set from the mouse fibroblast (Xiao
et al. 2016). The performance is similar to those across different hu-
man cell lines (Supplemental Fig. S2C), indicating the generaliza-
tion power of our method and suggesting potential applications
on different RNA-seq samples using the pretrained model.

To further confirm the transfer capacity of APAIQ using the
pretrained model, we applied APAIQ to an independent public
data set (Supplemental Method S2), which has been used to
benchmark computational methods for APA analysis (Shah et al.
2021). It turned out that >80% of the predicted PASs are within
25 nt to the PAS from annotation (union between GECODE and
PolyA_DB), whereas >60% of the predicted PASs are located within
25 nt to PAS in the ground truth and ∼70% are within 100 nt
(Supplemental Fig. S2D). This is slightly lower than the precision
achieved from the four cell lines (precision of around 0.72 using
25 nt as the threshold). We noticed that in general the sequencing
depth of these LCLRNA-seq samples are lower than that of the four
cell lines (∼100 M). Thus, we inspected the precision in samples
with different sequencing depth. We found that the precision is
positively correlated with sequencing depth, for which the sam-
ples with sequencing depth higher than 50 M have precisions
above 0.7 using 100 nt as the threshold (Supplemental Fig. S2E).

Because the PASs in the ground truth are derived from the in-
tegration of more than 50 3′-seq samples, we further checked the
recall by cumulating the predicted PASs from multiple RNA-seq
samples.With the increasing number of RNA-seq samples, the pre-
dictions could reach 70% recall for the PASs shared by Elife_PAS
and GB_PAS (Supplemental Fig. S2F). The relative low recall for
Elife_PAS is likely due to its high false positive rate as only 65.4%
(27,347 out of 41,784) of the Elife_PAS are overlapped with anno-
tation. Overall, using LCL data as an independent resource, we
showed that APAIQ could achieve similar performance as that
from the four cell lines with our pretrained model, indicating the
robustness and good transfer capacity of APAIQ for PAS identifica-
tion based on canonical RNA-seq data.

Accurate quantification of PAS usage by APAIQ

After the identification of PASs, we further aimed to quantify the
expression of each PAS based on RNA-seq data. To do so, we intro-
duced a regression model, in which we considered the expression
of the PAS (Y) as a dependent variable/response and the coverages
at each locus within 500 bp flanking the PAS (X) as predictors/
covariates. The expression Y was estimated by using 3′ end-seq
data and the coverage X was derived from RNA-seq data (Fig.
1A). Our prediction achieved an average Pearson correlation coef-
ficient of 0.75 in the four cell lines. Furthermore, we trained the
model from each cell line and made predictions in the other three
cell lines separately. It turned out that the correlation coefficients
derived between different cell lines were comparable to those from
the same cell line. This result is expected as RNA-seq coverage
around each PAS should be determined by its expression profile
in each sample and the features in coverage variations learned by
the model should be consistent across different samples. Overall,
this result also suggests a good transferability of the regression
model (Fig. 4A).
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Among an average of 11,010 genes expressed in each cell line,
∼50% of them used multiple PASs. For these genes, we calculated
the PAU by using its expression divided by the total expression
of all the PASs from the corresponding gene. In a recent study, a
metric (error) was introduced by summing up the PAU difference
across all the PASs from each gene, to measure the concordance
of PAU between prediction and quantification by 3′ end-seq data
(Fig. 4B). With this method, it showed that QAPA achieved the
lowest error in APA quantification (Shah et al. 2021).
Therefore, we further calculated the error of our predictions and
compared to the results from QAPA. It turned out that APAIQ
could predict PAU faithfully, with a much lower error rate than
QAPA (Fig. 4C).

Application of APAIQ to a TCGA RNA-seq data set identifies

tumor-associated APA events

Finally, we applied APAIQ on 421 RNA-seq samples (371 tumor
and 50 adjacent normal) from a liver hepatocellular carcinoma co-
hort in The Cancer Genome Atlas (TCGA-LIHC). An average of
11,432 PASs were identified in each sample and significantly
more (P-value<3.63×10−15, Wilcoxon test) PASs were identified
in tumor samples than that in the adjacent normal samples (Fig.
5A), suggesting higher transcriptional activities, abnormalities,
and/or heterogeneities of cells in tumor samples. Among these
identified PASs in each sample, 91% are overlapped with annota-
tion (within 25 bp away from the annotation), indicating the
high quality of the identified PASs.

By checking the sample-wise heterogeneity of the identified
PASs, we observed a typic bimodal distribution, in which most
PASs were either only detected in very few samples or detected in

almost all the samples (Supplemental Fig. S3A). Among them,
47,949 PASs were detected in more than one sample, including
36,319 annotated and 11,630 unannotated ones. Similar to the re-
sults from the cell lines (Fig. 3B), we were able to identify PASs
from all categories of genomic regions, in which the PASs from ter-
minal exon and intronic regions are the most abundant (51.8%
and 18.4% among 47,949 identified PASs). Compared to the iden-
tified PASs that are overlapped with annotation, those unannotat-
ed ones are most frequently located within intronic regions
(30.2%), with only 16.2% from terminal exon, suggesting that
PASs within terminal exon might be better annotated than those
from other regions, and IPA annotation needs improvement (Fig.
5B). Higher frequency of unannotated PASs identified in intronic
regions could also be due to the fact that the precision for the pre-
dicted PASs in intronic region is lower than that in terminal exon.
To further evaluate the quality of these identified PASs, we checked
the frequency of canonical PAS motif (AAUAAA) and its variants
and found that >90%of the identified PASs have themotifs, which
is even higher than that from annotation (Supplemental Fig. S3B).
In addition, themotif frequency for predictions acrossmultiple ge-
nomic locations is quite similar (Supplemental Fig. S3C), which is
consistent with the results in the cell line.

To quantify APA events and compare them between tumor
and normal, we further applied APAIQ to calculate the expression
level of each PAS. In total, 36,904 PASs from 15,326 protein-cod-
ing genes were sufficiently expressed (predicted RPM>1) in more
than one sample. Among these genes, 59.3% used multiple PASs
(Fig. 5C), which is slightly higher than 46% that has been report-
ed in a recent study based on 3′ end-seq data from lung cancer
patients (Zingone et al. 2021). For PASs located within terminal
exon, we defined weighted 3′ UTR length index (WULI), a metric

B

C

A

Figure 4. Accurate quantification of APA by APAIQ. (A) Correlation of the expression of the PAS predicted by APAIQ and that quantified by 3′ end-seq
data. The row indicates cell lines in which the model was trained, whereas the column indicates cell lines in which the prediction was performed.
(B) Schematic illustration of the calculation of the error of the PAS usage (PAU) between the prediction from APAIQ and that quantified by 3′ end-seq
data. (C ) Cumulative plot of the error of PAU predicted by APAIQ and QAPA in the four cell lines.
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to evaluate 3′ UTR length for each gene in each sample (Fig. 5D).
Compared to a previous method using only the two most highly
expressed PASs (distal and proximal) to measure 3′ UTR lengthen-
ing and shortening (Hoque et al. 2013), WULI calculated an av-
erage of lengths by taking into account both the UTR length
and usage of each isoform. To check the feasibility of the meth-
od, we first applied WULI to identify 3′ UTR shortening and
lengthening events by comparing two liver cancer cell lines
(HepG2 and SNU398) to normal liver cell line (THLE2) sepa-
rately. A consistent 3′ UTR shortening trend was observed in
these two comparisons (HepG2 vs. THLE2 and SNU398 vs.
THLE2) (Supplemental Fig. S3D).

Next, we analyzed the data from 50 matched tumor and nor-
mal samples, inwhich 245 shortening and 155 lengthening events
were identified. As shown in Supplemental Figure S3E as an exam-
ple, there are 16 annotated PASs located within the terminal exon
of gene RAB11A and four of them have been used. The identified
3′ UTR shortening was mainly contributed by the increased usage

of two proximal PASs in tumor samples compared to that in nor-
mal samples. We found that those genes with 3′ UTR shortening
were enriched for functions related to platelet alpha granule and
response to endoplasmic reticulum (ER) stress (Fig. 5E), whereas
no significant functional enrichment was identified for genes
with 3′ UTR lengthening. ER stress is frequently observed in can-
cer, including hepatocellular carcinoma (HCC), due to its high de-
mand of protein synthesis. Our finding is consistent with previous
observations that genes related to the response of ER stress are ac-
tivated in HCC and correlated with poor prognosis (Shuda et al.
2003; Pavlovic ́ and Heindryckx 2021). On the other hand,
platelet alpha granulemight be critical for tumor favoredmicroen-
vironment (Pavlovic et al. 2019).

For each intronic PAS, we calculated its PAU and compared
that between tumor andnormal samples. As a result, 68 up-regulat-
ed and 73 down-regulated IPA eventswere identified and the genes
with the dysregulated IPA are enriched in protein activation cas-
cade GO term (GO:0072376, odds ratio = 9.86, FDR=0.001) and

A

C D
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B

Figure 5. Applying APAIQ on a large-scale RNA-seq data set identifies tumor-associated APA events. (A) Boxplot showing the number of annotated and
novel PASs identified by APAIQ in each RNA-seq sample from TCGA-LIHC. P-values were derived from Wilcoxon test. (B) Proportion of the identified PASs
from a different genomic category. The outer circle indicates the identified PASs that are overlapped with the annotation and the inner pie presents the
identified PASs that are not overlappedwith the annotation. (C ) Numbers of geneswith different numbers of the identified PASs. (D) A schematic illustration
of the calculation of weighted 3′ UTR length index (WULI). PAU stands for PAS usage and the l1, l2, and l3 represent the length from start to the terminal
exon to each PAS. (E) Barplot showing the BH-adjusted P-value (FDR) of Gene Ontology terms and KEGG pathways enriched for genes with 3′ UTR short-
ening in tumor compared to normal.
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complement and coagulation cascades pathway (hsa04610, odds
ratio = 8.32, FDR=0.001).

Validation of the predicted tumor-associated APA events

in a liver cancer cell line

To experimentally validate APAIQ predictions, we selected 20
identified PASs that are not overlapped with any annotated tran-
script 3′ ends and performed 3′ RACE experiments to examine
whether these PASs were expressed/used in a liver colon cancer
cell line, HepG2 (Supplemental Table S2). Seventeen out of 20 of
them were successfully validated and the failed three candidates
might be due to their relative low expression level in the cell line
(Supplemental Fig. S4A,B). Furthermore, we conducted a liga-
tion-based assay and confirmed that 16 out of the 17 candidates in-
deed have poly(A) tail, whereas the only failed one has the lowest
expression among these 17 candidates (Supplemental Fig. S4C,D).

In addition, among the tumor-associated IPA events, the top
significant one enriched in cancer is from the gene flavin adenine
dinucleotide synthetase 1 (FLAD1), which is overexpressed inmul-
tiple cancer types, including gastric, breast, and liver cancer, and
correlated with poor prognosis (Jia et al. 2019; Hu et al. 2020; Ye
et al. 2020). We found that the identified IPA is barely or almost
not used in normal samples, whereas usage of the IPA in tumor
samples is comparable to the canonical PAS (Fig. 6A). Compared
to the full-length isoform, transcripts with this IPA encode a
much shorter protein isoform with distinct amino acids (294 ami-
no acids vs. 587 amino acids). The canonical protein isoform en-
coded by FLAD1 is a key enzyme in flavin adenine dinucleotide
biosynthesis, whereas for the short protein isoform, it awaits future
investigation to explore its functions in cancer.

Another IPA candidate that is highly used in tumor samples
but barely used in normal samples is from the gene ERCC1, which
encodes a protein with DNA repair functions (Fig. 6B). The tran-
scripts using this intronic PAS could generate a protein with a var-
ied C-terminal (ERCC1-201) compared to canonical protein
isoforms (ERCC1-202). Using Alpha-fold (Jumper et al. 2021), we
predicted structures of these two proteins-isoforms and found
that a typic alpha helix structure at the C-terminal of ERCC1-
202 would be disrupted in ERCC1-201 (Supplemental Fig. S5),
which might impact its function. Indeed, a previous study report-
ed that theC-terminal of ERCC1-202 contains the domain for dou-
ble-strand DNA binding and interacts with its cofactor ERCC4
(previously known as XPF), and therefore only ERCC1-202 has
full capacity for nucleotide excision repair (Friboulet et al. 2013).
These results suggested that tumor cells with IPA of ERCC1 would
have dysregulated DNA repair functions, which might contribute
to HCC development.

Finally, we validated these two candidates by performing a
3′ rapid amplification of cDNA ends (3′ RACE) experiment in the liv-
er cancer cell line HepG2. As shown in Figure 6C–F, we successfully
detected the IPA transcript from both genes. Moreover, using real-
time quantitative reverse transcription PCR (qRT-PCR), we showed
that the relative expression levels of the transcript isoforms using
IPA compared to the canonical ones are consistent with what we es-
timated by APAIQ with tumor samples from the TCGA-LIHC data
set (Fig. 6C,D). These results further confirmed the reliability of
APAIQ. Taken together, our results demonstrated that APAIQ is a
powerful tool to facilitate APA analysis and its functional under-
standing using large-scale public RNA-seq data sets, such as that
from TCGA, the Genotype-Tissue Expression (GTEx), and the
ENCyclopedia Of DNA Elements (ENCODE) projects.

Discussion

There are only around 20,000 genes in the human genome, where-
as 10 times or even more numbers of transcripts were transcribed
from these gene loci, which are mainly mediated by a series of
RNA metabolic processes, including alternative transcriptional
start site (TSS), alternative splicing, and APA. With the emerging
of high-throughput sequencing technology, gene expression, al-
ternative splicing, and RNA editing have been extensively studied
by directly using the RNA-seq data. However, utilization of con-
ventional RNA-seq data for comprehensive APA analysis remains
limited due to the shortage and limitations of current methods
for APA identification and quantification. The main limitations
of the current methods include the following: (1) RNA-seq cover-
age-based methods are impacted by frequent fluctuation of cover-
ages in transcriptome, resulting in high false positives and bias
toward 3′ UTR; (2) DNA sequence-basedmethods are unable to dis-
tinguish PAS expressed versus unexpressed in specific samples; (3)
the recently published method, Aptardi, which is the first method
to integrate both RNA-seq coverage and DNA sequence, was de-
signed for scanning 3′ UTR with a 300 bp window. Thus, it can
only determine whether or not a window contains truly ex-
pressed/used PASs and this resolution for PAS identification is rel-
atively low.

A recent systematic evaluation of 11 methods using simulat-
ed and public 3′ end-seq data showed that TAPAS has the best per-
formance, followed byDaPars (Chen et al. 2020). Based on amore
recent study that benchmarked five computational methods for
APA analysis with 3′ end-seq and Iso-Seq, none of them were
able to identify >50% of the expressed PAS except QAPA which
requires the annotated PAS as input. Among the five, the second
generation of DaPars (DaPars2) identified slightly more annotat-
ed PAS than TAPAS. For the quantification of PAS usage, this
study showed that QAPA has the lowest error rate (Shah et al.
2021).

Here, we generated a data set for benchmarking, which in-
cludes thematched 3′ end-seq and RNA-seq data from four human
cell lines. To be noted, the in-house 3′ end-seq data have two inde-
pendent sources. The 3′ end sequencing of HepG2, SNU398, and
THLE2 cell lines was performed in one lab and K562 in another
lab. The matched RNA-seq data of the four cell lines were from
four independent sources (Methods). However, the performance
of APAIQ on these four cell lines is quite consistent (Figs. 2A,B,
4A,C), indicating the robustness of our methods. By using
3′ end-seq data as the benchmark, we showed that APAIQ can iden-
tify >70% of the expressed PAS with FPR <10%. As we found that
PASs with higher expression level achieved higher recall (Fig.
2B), suggesting that the false negatives could be enriched for lowly
expressed PASs. The false positives without 3′ end-seq supports
could be due to either strong PAS-related cis-elements around these
loci or the RNA-seq read coverage having clear drop patterns. The
former would not become false positive anymore in the differen-
tial APA analysis as the inputDNA sequences are identical, whereas
the latter might be due to some biases introduced by RNA-seq,
which still needs further detailed analysis.

Apart from PAS identification, APAIQ also achieves a much
lower error rate on APA quantification compared to QAPA (Fig.
4C). For instance, with APAIQmore than half of genes have an er-
rormargin of PAU <0.4%, and∼75%of the PASs have an errormar-
gin lower than 0.6. In comparison, these error margins were 0.6
(50% genes) and 0.95 (75% genes), respectively, when using
QAPA, the best tool thus far for APA quantification (Shah et al.

APA identification and quantification with APAIQ

Genome Research 9
www.genome.org

 Cold Spring Harbor Laboratory Press on May 2, 2023 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.277177.122/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.277177.122/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.277177.122/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.277177.122/-/DC1
http://genome.cshlp.org/
http://www.cshlpress.com


2021). For a major PAS with PAU>0.65, the probability to falsely
determine it as a minor PAS (PAU<0.35, error > 0.6) is <25% using
APAIQ, whereas this could be as high as 50% using QAPA.

Therefore, using the same RNA-seq data, APAIQ could
improve the accuracy of APA quantification compared to current
methods.

A

C

E

F

D

B

Figure 6. Experimental validation of the predicted APA events. (A,B) Genome Browser showing an identified tumor-associated IPA event (highlighted in
orange) from genes ERCC1 (A) and FLAD1 (B). (C,D) The gel of 3′ RACE experiment (left bottom) and qRT-PCR results of the two isoforms from genes ERCC1
(C ) and FLAD1 (D). (E,F) Sanger sequencing results of the amplified transcripts from ERCC1 (E) and FLAD1 (F) by using 3′ RACE experiment. Genomic se-
quences downstream from cleavage site identified by Sanger sequencing for two IPA were marked in red.
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As we used the common human genome assembly (hg38) to
extract DNA sequence for PAS identification, the genetic variations
and polymorphisms were neglected. This could be a limitation of
our currentmethod, especiallywhen applying it on tumor samples
that frequently harbored a large number of DNAmutations. A later
version incorporating small nucleotide variation (SNV) and struc-
ture variations could identify PASs more accurately, and mean-
while potentially provide direct links to the identification of
APA-related variations.

Most of the previous methods, such as DaPars2 (Li et al.
2021), GETUTR (Kim et al. 2015), QAPA (Ha et al. 2018), and
Aptardi (Lusk et al. 2021), were designed for APA analysis within
the terminal exon, in which APA has been extensively studied.
For instance, utilizing RNA-seq data from TCGA, the landscape
of APA regulating 3′ UTR lengthening and shortening has been
characterized by several previous studies (Xia et al. 2014; Feng
et al. 2018). On the other hand, global studies of APA using
RNA-seq data from other regions, such as intronic regions, that
could alter coding sequence (CDS) and the coding potential,
have just recently been addressed (Zhao et al. 2021a). APAIQ could
greatly facilitate such a kind of analysis as it can identify and quan-
tify APA in a transcriptome-wide manner, which was demonstrat-
ed by the application of APAIQ on RNA-seq data from the TCGA-
LIHC cohort. Indeed, we identifiedmore than 100 tumor-associat-
ed/specific IPA events, including the validated FLAD1-IPA and
ERCC1-IPA, which likely contribute to liver cancer development
by altering the coding sequence of functional domains. Future ap-
plications of APAIQ on the complete TCGA data set would build a
comprehensive atlas of RNA transcript 3′ ends in human cancer,
whichwould facilitate a complete understanding of the functional
relevance of APA regulation in tumor development.

Methods

Cell lines and high-throughput RNA sequencing

Total RNA was extracted from the cell lines, including THLE2,
HepG2, K562, and SNU398, using TRIzol reagent followed by col-
umn purification using the PureLink RNAMini Kit (Thermo Fisher
Scientific). Next, the extracted RNA was prepared for library with
QuantSeq 3′mRNA-seq Library Prep Kit REV for Illumina
(Lexogen) and sent for sequencing.

3′ RACE and qRT-PCR

Total RNA was extracted using RNA Isolator Total RNA Extraction
Reagent (Vazyme R401-01). For qRT-PCR, the first-strand cDNA
was synthesized using the HiScript III 1st Strand cDNA Synthesis
Kit (Vazyme R312-02) with oligo(dT) as reverse transcription
(RT) primer. Quantitative PCR (qPCR) was performed using Hieff
qPCR SYBR Green Master Mix (Yeasen).

For the 3′ RACE assay, cDNAwas synthesized using anchored
oligo(dT) (GACCACGCGTATCGATGTCGACTTTTTTTTTTTTTTTT
TTVN) as RT primer. Then cDNAwas amplified by nest PCR using
gene specific forward primers and anchor reverse primer (anchor-
R). PCR products were separated by agarose gel and purified by Gel
DNA Exaction mini kit (Vazyme). Purified PCR products were sent
for Sanger sequencing and visualized by SnapGene Viewer. Primer
sequences were listed in Supplemental Table S3.

Ligation assay

For the ligation assay, ribosomal RNA and tRNA were first
removed from 2 μg total RNA, using the ZYMO RNA Clean &

Concentrator-5 kit (Zymo R1015). The rRNA-depleted RNA (5 μL)
was thenmixedwith 1 μL 50 pmolUniversalmiRNA cloning linker
(NEB S1315S; 5′ rAppCTGTAGGCACCATCAAT–NH2 3′) at 65°C
for 5 min, and then ligated using T4 RNA Ligase 2, truncated KQ
(NEB M0373S) at 16°C for 10 h. After ligation with 3′ adaptor,
cDNA was synthesized by SMARTer PCR cDNA Synthesis Kit
(TaKaRa 634926). The 3′ cDNA end of individual gene was ampli-
fied by nest PCR using gene specific forward primers and ligation
reverse primer (ligation-R). PCR products were separated by aga-
rose gel and sent for Sanger sequencing. Primer sequences are list-
ed in Supplemental Table S3.

Sequencing data processing

Clean reads of RNA-seq data from four cell lines, including both
the in-house and published data sets (obtained from the NCBI
BioProject database [https://www.ncbi.nlm.nih.gov/bioproject/]
PRJNA495931, PRJNA56 2266, and library ENCLB471LNG
and ENCLB352YLJ from the ENCODE Project) (The ENCODE
Project Consortium 2004), were aligned to human reference ge-
nome (hg38) with the transcriptome annotation (https://www
.gencodegenes.org) using STAR (Dobin et al. 2013). We used stan-
dard parameters from the ENCODE Project (https://www
.encodeproject.org) for the alignment and only the unique
mapped reads were kept for further analysis. The parameter
“- -outWigType bedGraph” from STAR was used to generate files
of the RNA-seq coverage in the bedGraph format, in which the
coverage at each genomic locus was normalized to reads per mil-
lion (RPM) using the total uniquely mapped reads.

For 3′ end sequencing data, using the same criteria as in the
previous study (Tian et al. 2022), Illumina sequencing adaptor
and the leading T at the forward read (read 1) was removed.
Next, the clean forward reads were aligned to reference genome
(hg38) using STAR (Dobin et al. 2013).

Positive and negative data set preparation

To get training and testing data sets for the deep-learning model,
we first built the general annotation using 289,565 PASs from
polyADB3 and 184,617 PASs extracted from the transcript end
based on GENCODE annotation. Next, in each cell line, we
mapped the reads from 3′ end sequencing data to the annotation
with “BEDTools” to get the expressed PAS in each sample (sam-
ple-specific PASs). In brief, for each PAS, any reads with 3′ end lo-
cated within 25 bp were counted and then normalized to RPM
using total uniquely mapped reads. If two annotated PASs were lo-
cated within 50 bp, only the one with higher expression was kept.
Because the used 3′ end-seq might introduce internal primming,
we only include the expressed and annotated PASs in downstream
analysis. Next, in each sample, by overlapping the PAS with gene
annotation, we calculated the relative usage of each PAS by divid-
ing the expression of the PAS to the sum of all the PASs from the
same gene. Any PAS with expression level higher/no less than
0.1 RPM and usage higher/no less than 0.05 was considered as ex-
pressed/used.

For each expressed PAS in each cell line, we extracted theDNA
sequence and the RNA-seq coverage from 100 bp upstream to 100
bp downstream regions. To avoid discrepancy between RNA-seq
and 3′ end-seq data from the same sample/cell line, we further fil-
tered out the PAS by requiring that the average RNA-seq coverage
at 100 bp upstream should be no less than 0.05 RPM. In this
way, we finally got ∼20,000 used/expressed PASs as the positive
data set (ground truth) in each cell line (Fig. 1B). The same number
of sites with average RNA-seq coverage no less than 0.05 RPM at
100 bp upstream regions, and meanwhile being at least 50 bp far
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away from any true PAS, was randomly selected from the genome
as negative data set.

A hybrid deep-learning model using both DNA sequence

and RNA-seq coverage

As shown in Figure 1A, we built a hybrid deep-learningmodel that
contains two independent convolutional neuron networks, which
take DNA sequence and RNA-seq coverage as input, respectively.
TheDNA sequence underwent one-hot encoding to 201×4matrix
and the normalized RNA-seq coverage (RPM values) was converted
to 201×1matrix. Both of themwent through a convolutional lay-
er consisting of 32 filters with a kernel size of 6. These were fol-
lowed by a group normalization layer with group size 4. A
rectified linear unit (ReLU) was applied to the normalized results
as the activation function. After a max-pooling layer with pooling
window setting as 6, features were flattened into one-dimensional
array and fed to the fully connected layer. Then, two features were
concatenated together and fed into another fully connected layer
followed by a softmax activation function to approximate the
probability function. The final output is a prediction score be-
tween 0 and 1, whereas dropout was introduced after the max-
pooling layer as regularization to reduce over-fitting problems
(Supplemental Method S3).

Training and evaluation of the deep-learning model on binary

classification

In each sample, we applied a cross-validation strategy to evaluate
our learning model, in which we trained the model with 80% of
the positive data set and negative data set and tested it in the
rest of the data set. We measured a series of metrics, including ac-
curacy, recall, FPR, and FDR, for the evaluation.

An enhanced model for genome scanning

Because our model achieved extraordinary performance on binary
classification (Supplemental Table S1), we wanted to apply it for
genome scanning. We introduced a data augmentation strategy,
in which we set the training epoch as 500 and the mini-batch
size as 32. In each epoch, the sites randomly shifted from the
true PAS from −12 to 12 bp were considered as the positive sam-
ples, whereas the sites more than 50 bp away from any true PAS
were considered as negatives. To evaluate themodel in each epoch,
we split the genome into blocks with length of about one million
base pair (bp) and we got ∼3000 blocks in each sample. These
blocks were further divided into five groups and a fivefold cross-
validation was applied for the evaluation.

Eventually, we selected the model with the highest accuracy,
and utilized it to scan the genomewith a stepwise one bp. Any site
with coverage lower than 0.05 RPM at the upstream 100 bp was ig-
nored. In this way, for each site, we used the window from up-
stream 100 bp to downstream 100 bp as input and obtained a
score between 0 and 1.

As the model was trained by randomly shifting from −12 to
12 bp to the true PAS, sites close to the true PAS would also get a
relatively high score (>0.5). To further find the precise position
of the PAS and reduce the total number of the predicted sites, we
introduced a clustering method to convert site-based score (Sc)
to a cumulative cluster-based score (Cc). In brief, we first scanned
the prediction score at each site in the forward direction based on
genomic coordinates. The initial Cc was set as 0 and any continu-
ous sites with prediction score higher than 0.5 were merged into
the cluster and Ccwould be accumulated with the prediction score
of the site, whereas any sites with score lower than 0.5would give a
penalty P (default = 1) to Cc. The cluster was ended when Cc

dropped to 0 and the site that obtained maximum Cc within
each cluster was reported as the peak summit. We found that these
summits showed a systematic bias toward the downstream of the
true PAS. To correct this bias, we repeated the scanning in the re-
verse direction based on genomic coordinates, which reported
summits showing bias toward the upstream of the true PAS.We fi-
nally used the middle position between the forward scanned sum-
mit and the backward scanned summit as the putative PAS.

Benchmarking computational methods for APA analysis

with 3′ end-seq data

For APA identification, any predicted PAS within 25 bp away from
the ground truth (annotated PAS with expression>0.1 RPM and
usage >0.05) was considered as true positive, whereas any annotat-
ed PAS that is not expressed (RPM=0) while covered with RNA-seq
reads (average RPMat 100 bp upstream>0.05), andmeanwhile not
being detected by the method, was defined as true negative (TN).
The false positives (FP) are those predicted PASs located >25 bp
away from the ground truth. A ROC curve was generated to
illustrate the performance of APAIQ and four other methods, in-
cluding Aptardi, DaPars2, mountainClimber, and SANPolyA. As
SANPolyA is designed for binary classification, we did the predic-
tion at each locus and implemented the same forward and back-
ward scanning strategy to pinpoint the final PAS. As Aptardi
scanned PAS with a 300 bp window and stepwise is 100 bp, we fur-
ther relaxed the definition of TP and FP for those PASs within 100
bp and apart from the ground truth, respectively, and repeated the
comparative analysis again.

For APA quantification, we used the same metric, termed as
error, as described in the previous study (Shah et al. 2021), to mea-
sure the concordance between the prediction of the PAS usage and
the quantification from the 3′ end-seq. In brief, we calculated the
usage of each PAS (PAU) by using its expression divided by the total
expression of all the PASs from the corresponding gene. Next, the
difference between the predicted PAU and the PAU quantified by
3′ end-seq was calculated (delta PAU). For each gene, error was de-
rived by summing up the absolute value of delta PAU of all the
PASs from each gene. Cumulative distribution of error among all
the genes with multiple PASs was generated and the results from
APAIQ were further compared to those from QAPA.

Analysis of TCGA RNA-seq data with APAIQ

RNA-seq data of 421 samples from the TCGA-LIHC cohort were
downloaded from the Genomic Data Commons (GDC) using the
GDC Data Transfer Tool (https://gdc.cancer.gov/access-data/gdc-
data-transfer-tool) and aligned to the reference human genome
(hg38) using STAR (v2.7.9) with two pass model (Dobin et al.
2013). RNA-seq coverage at each genomic locus was derived from
the BAM file by using BEDTools (Quinlan and Hall 2010). For
each sample, APAIQ was conducted to predict the PAS, and any
PASs detected in more than one sample were kept and merged to
build a comprehensive reference. For each PAS in the reference, re-
gression model was further applied to quantify the expression
level.

Based on the quantified expression level (TPM) of each PAS,
we calculated the PAS usage (PAU). For each PAS in each gene,
we divided the expression of the PAS by the sum of expression of
all the PASs from this gene to get the PAU. To evaluate the effect
of PAS usage on 3′ UTR length, instead of using all PASs, we calcu-
lated the usage only for the PAS located on the terminal exon (ex-
pression of the PAS divided by the sum of the expression of all the
PASs located on the same terminal exon). We further defined
weighted 3′ UTR length index (WULI) by using usage of each
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PAS within the terminal exon and their corresponding terminal
exon length. In this way, each gene was assigned a WULI, which
is a value from 0 to 1, and the larger value indicates that the iso-
forms with greater 3′ UTR length were used.

We further compared PAU of each PAS or WULI of each gene
in the 50 TCGA tumor samples to that in the 50matched adjacent
normal samples with Wilcoxon test. The Benjamini–Hochberg
method was applied to adjust the P-values from multiple compar-
isons. The significant PAU or 3′ UTR changes were obtained by re-
quiring the BH-adjusted P-value (FDR) to be smaller than 0.1. Aswe
only used the matched tumor and normal samples from the same
patient, the age, gender, ethnicity, and other variables arematched
between tumor and normal samples, which are unlikely to con-
found the results.

Software availability

The open source code of APAIQ is freely available as the Supple-
mental Code file and at GitHub (https://github.com/ijayden-lung/
APAIQ). The compiled version can be found at https://anaconda
.org/joshuachou/apaiq.

Data access

The raw 3′ end-seq data and K562 RNA-seq data generated in
this study have been submitted to NCBI BioProject database
(https://www.ncbi.nlm.nih.gov/bioproject/) under accession
number PRJNA794041.

Competing interest statement

The authors declare no competing interests.

Acknowledgments

We thank all past and present members in the Structure and
Functional Bioinformatics Group for their assistance and con-
structive feedback on this project. We also thank KAUST-HPC for
providing generous support on computational resources. This
work was supported by King Abdullah University of Science and
Technology (KAUST) Office Administration (ORA) under Award
Nos. FCC/1/1976-44-1, FCC/1/1976-44-01, FCC/1/1976-45-01,
URF/1/4098-01-01, URF/1/4352-01-01, URF/1/4379-01-01, URF/1/
4663-01-01, REI/1/5202-01-01, and REI/1/4940-01-01; National
Key Research and Development Program of China (Grant No.
2021YFF1201000); National Nature Science Foundation of China
(Grant Nos. 62002388, 32100431, 31970601); Shenzhen Science
and Technology Program (Grant No. KQTD20180411143432337);
and Shenzhen–Hong Kong Institute of Brain Science–Shenzhen
Fundamental Research Institutions (Grant No. 2021SHIBS0002).

Author contributions:W.C., X.G., and B.Z. designed the study.
Y. Long constructed the deep-learning model, wrote the original
code, and prepared the data for the analysis. B.Z. performed the
data analysis andmodified the source code of APAIQ. S.T. prepared
high-throughput sequencing library for K562 and performed ex-
perimental validation in HepG2. J.J.C. prepared the sequencing li-
brary for HepG2, SNU398, and THLE2. J.Z. helped to build the
deep-learning model and compiled the source code to bio-conda.
Z.L., Z.A., and Y.X. provided RNA-seq data from the TCGA project.
Y. Li helped the primary analysis of K562 3′ end-seq data.W.C. and
Y.T. provided the cell line samples. X.L. helped to modify the
source code. Y.W. and S.S. helped to predict protein structures.
Y. Long, B.Z., W.C., and X.G. wrote the manuscript.

References

Arefeen A, Liu J, Xiao X, Jiang T. 2018. TAPAS: tool for alternative polyade-
nylation site analysis. Bioinformatics 34: 2521–2529. doi:10.1093/bioin
formatics/bty110

Cass AA, Xiao X. 2019. mountainClimber identifies alternative transcrip-
tion start and polyadenylation sites in RNA-seq. Cell Syst 9: 393–
400.e6. doi:10.1016/j.cels.2019.07.011

Chang J-W, ZhangW, YehH-S, De Jong EP, Jun S, KimK-H, Bae SS, Beckman
K, Hwang TH, Kim K-S. 2015. mRNA 3′-UTR shortening is a molecular
signature of mTORC1 activation. Nat Commun 6: 7218. doi:10.1038/
ncomms8218

Chen M, Ji G, Fu H, Lin Q, Ye C, YeW, Su Y, Wu X. 2020. A survey on iden-
tification and quantification of alternative polyadenylation sites from
RNA-seq data. Brief Bioinformatics 21: 1261–1276. doi:10.1093/bib/
bbz068

Cheng Y, Miura RM, Tian B. 2006. Prediction of mRNA polyadenylation
sites by support vector machine. Bioinformatics 22: 2320–2325. doi:10
.1093/bioinformatics/btl394

Derti A, Garrett-Engele P, MacIsaac KD, Stevens RC, Sriram S, Chen R, Rohl
CA, Johnson JM, Babak T. 2012. A quantitative atlas of polyadenylation
in five mammals. Genome Res 22: 1173–1183. doi:10.1101/gr.132563
.111

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P,
ChaissonM,Gingeras TR. 2013. STAR: ultrafast universal RNA-seq align-
er. Bioinformatics 29: 15–21. doi:10.1093/bioinformatics/bts635

The ENCODE Project Consortium. 2004. The ENCODE (ENCyclopedia Of
DNA Elements) Project. Science 306: 636–640. doi:10.1126/science
.1105136

Feng X, Li L, Wagner EJ, Li W. 2018. TC3A: The Cancer 3′ UTR Atlas.Nucleic
Acids Res 46: D1027–D1030. doi:10.1093/nar/gkx892

Friboulet L, Olaussen KA, Pignon J-P, Shepherd FA, Tsao M-S, Graziano S,
Kratzke R, Douillard J-Y, Seymour L, Pirker R, et al. 2013. ERCC1 isoform
expression and DNA repair in non–small-cell lung cancer. N Engl J Med
368: 1101–1110. doi:10.1056/NEJMoa1214271

Ha KC, Blencowe BJ, Morris Q. 2018. QAPA: a new method for the system-
atic analysis of alternative polyadenylation from RNA-seq data. Genome
Biol 19: 45. doi:10.1186/s13059-018-1414-4

Herrmann CJ, Schmidt R, Kanitz A, Artimo P, Gruber AJ, Zavolan M. 2020.
PolyASite 2.0: a consolidated atlas of polyadenylation sites from 3′ end
sequencing. Nucleic Acids Res 48: D174–D179. doi:10.1093/nar/gkz918

HoqueM, Ji Z, Zheng D, LuoW, LiW, You B, Park JY, Yehia G, Tian B. 2013.
Analysis of alternative cleavage and polyadenylation by 3′ region extrac-
tion and deep sequencing. Nat Methods 10: 133–139. doi:10.1038/
nmeth.2288

Hu J, Lutz CS, Wilusz J, Tian B. 2005. Bioinformatic identification of candi-
date cis-regulatory elements involved in human mRNA polyadenyla-
tion. RNA 11: 1485–1493. doi:10.1261/rna.2107305

Hu P, Pan Y,Wang C, ZhangW,Huang H,Wang J, Zhang N. 2020. FLAD1 is
up-regulated in Gastric Cancer and is a potential prediction of progno-
sis. Int J Med Sci 17: 1763–1772. doi:10.7150/ijms.48162

Jan CH, Friedman RC, Ruby JG, Bartel DP. 2011. Formation, regulation and
evolution of Caenorhabditis elegans 3′ UTRs. Nature 469: 97–101. doi:10
.1038/nature09616

Jia X, Wang C, Huang H, Zhang P, Yao Z, Xu L. 2019. FLAD1 is overex-
pressed in breast cancer and is a potential predictor of prognosis and
treatment. Int J Clin Exp Med 12: 3138–3152.

Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O,
Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, et al. 2021.
Highly accurate protein structure prediction with AlphaFold. Nature
596: 583–589. doi:10.1038/s41586-021-03819-2

Kim M, You B-H, Nam J-W. 2015. Global estimation of the 3′ untranslated
region landscape using RNA sequencing. Methods 83: 111–117. doi:10
.1016/j.ymeth.2015.04.011

Lee S-H, Singh I, Tisdale S, Abdel-Wahab O, Leslie CS, Mayr C. 2018.
Widespread intronic polyadenylation inactivates tumour suppressor
genes in leukaemia. Nature 561: 127–131. doi:10.1038/s41586-018-
0465-8

Li L, Huang K-L, Gao Y, Cui Y,WangG, ElrodND, Li Y, Chen YE, Ji P, Peng F.
2021. An atlas of alternative polyadenylation quantitative trait loci con-
tributing to complex trait and disease heritability. Nat Genet 53: 994–
1005. doi:10.1038/s41588-021-00864-5

Lusk R, Stene E, Banaei-Kashani F, Tabakoff B, Kechris K, Saba LM. 2021.
Aptardi predicts polyadenylation sites in sample-specific transcriptomes
using high-throughput RNA sequencing and DNA sequence. Nat
Commun 12: 1652. doi:10.1038/s41467-021-21894-x

Martin G, Gruber AR, Keller W, Zavolan M. 2012. Genome-wide analysis of
pre-mRNA 3′ end processing reveals a decisive role of human cleavage
factor I in the regulation of 3′ UTR length. Cell Rep 1: 753–763. doi:10
.1016/j.celrep.2012.05.003

APA identification and quantification with APAIQ

Genome Research 13
www.genome.org

 Cold Spring Harbor Laboratory Press on May 2, 2023 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.277177.122/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.277177.122/-/DC1
https://github.com/ijayden-lung/APAIQ
https://github.com/ijayden-lung/APAIQ
https://github.com/ijayden-lung/APAIQ
https://github.com/ijayden-lung/APAIQ
https://github.com/ijayden-lung/APAIQ
https://anaconda.org/joshuachou/apaiq
https://anaconda.org/joshuachou/apaiq
https://anaconda.org/joshuachou/apaiq
https://anaconda.org/joshuachou/apaiq
https://www.ncbi.nlm.nih.gov/bioproject/
https://www.ncbi.nlm.nih.gov/bioproject/
https://www.ncbi.nlm.nih.gov/bioproject/
https://www.ncbi.nlm.nih.gov/bioproject/
https://www.ncbi.nlm.nih.gov/bioproject/
https://www.ncbi.nlm.nih.gov/bioproject/
http://genome.cshlp.org/
http://www.cshlpress.com


Mayr C, Bartel DP. 2009. Widespread shortening of 3′ UTRs by alternative
cleavage and polyadenylation activates oncogenes in cancer cells. Cell
138: 673–684. doi:10.1016/j.cell.2009.06.016

Miura P, Shenker S, Andreu-Agullo C, Westholm JO, Lai EC. 2013.
Widespread and extensive lengthening of 3′ UTRs in the mammalian
brain. Genome Res 23: 812–825. doi:10.1101/gr.146886.112

Park HJ, Ji P, Kim S, Xia Z, Rodriguez B, Li L, Su J, Chen K, Masamha CP,
Baillat D, et al. 2018. 3′ UTR shortening represses tumor-suppressor
genes in trans by disrupting ceRNA crosstalk. Nat Genet 50: 783–789.
doi:10.1038/s41588-018-0118-8

Pavlovic ́ N, Heindryckx F. 2021. Exploring the role of endoplasmic reticu-
lum stress in hepatocellular carcinoma through mining of the human
protein atlas. Biology (Basel) 10: 640. doi:10.3390/biology10070640

Pavlovic N, Rani B, Gerwins P, Heindryckx F. 2019. Platelets as key factors
in hepatocellular carcinoma. Cancers (Basel) 11: 1022. doi:10.3390/
cancers11071022

Proudfoot N, Brownlee G. 1976. 3′ non-coding region sequences in eukary-
otic messenger RNA. Nature 263: 211–214. doi:10.1038/263211a0

Quinlan AR, Hall IM. 2010. BEDTools: a flexible suite of utilities for compar-
ing genomic features. Bioinformatics 26: 841–842. doi:10.1093/bioinfor
matics/btq033

Sandberg R, Neilson JR, Sarma A, Sharp PA, Burge CB. 2008. Proliferating
cells express mRNAs with shortened 3′ untranslated regions and fewer
microRNA target sites. Science 320: 1643–1647. doi:10.1126/science
.1155390

Shah A, Mittleman BE, Gilad Y, Li YI. 2021. Benchmarking sequencing
methods and tools that facilitate the study of alternative polyadenyla-
tion. Genome Biol 22: 291. doi:10.1186/s13059-021-02502-z

ShudaM, KondohN, Imazeki N, Tanaka K, Okada T,Mori K, Hada A, AraiM,
Wakatsuki T,MatsubaraO, et al. 2003. Activation of the ATF6, XBP1 and
grp78 genes in human hepatocellular carcinoma: a possible involve-
ment of the ER stress pathway in hepatocarcinogenesis. J Hepatol 38:
605–614. doi:10.1016/S0168-8278(03)00029-1

Tian B, Hu J, Zhang H, Lutz CS. 2005. A large-scale analysis of mRNA poly-
adenylation of human and mouse genes. Nucleic Acids Res 33: 201–212.
doi:10.1093/nar/gki158

Tian S, Zhang B, He Y, Sun Z, Li J, Li Y, Yi H, Zhao Y, Zou X, Li Y. 2022.
CRISPR-iPAS: a novel dCAS13-based method for alternative polyadeny-
lation interference. Nucleic Acids Res 50: e26. doi:10.1093/nar/gkac108

Wang R, Tian B. 2020. APAlyzer: a bioinformatics package for analysis of al-
ternative polyadenylation isoforms. Bioinformatics 36: 3907–3909.
doi:10.1093/bioinformatics/btaa266

Wang R, Nambiar R, Zheng D, Tian B. 2018. PolyA_DB 3 catalogs cleavage
and polyadenylation sites identified by deep sequencing inmultiple ge-
nomes. Nucleic Acids Res 46: D315–D319. doi:10.1093/nar/gkx1000

Xia Z, Donehower LA, Cooper TA, Neilson JR,Wheeler DA,Wagner EJ, LiW.
2014. Dynamic analyses of alternative polyadenylation from RNA-seq
reveal a 3′-UTR landscape across seven tumour types. Nat Commun 5:
5274. doi:10.1038/ncomms6274

Xia Z, Li Y, Zhang B, Li Z, Hu Y, Chen W, Gao X. 2019. DeeReCT-PolyA: a
robust and generic deep learning method for PAS identification.
Bioinformatics 35: 2371–2379. doi:10.1093/bioinformatics/bty991

Xiao MS, Zhang B, Li YS, Gao Q, Sun W, Chen W. 2016. Global analysis of
regulatory divergence in the evolution of mouse alternative polyadeny-
lation. Mol Syst Biol 12: 890. doi:10.15252/msb.20167375

Xie B, Jankovic BR, Bajic VB, Song L, Gao X. 2013. Poly(A) motif prediction
using spectral latent features from human DNA sequences.
Bioinformatics 29: i316–i325. doi:10.1093/bioinformatics/btt218

Ye C, Long Y, Ji G, Li QQ, Wu X. 2018. APAtrap: identification and quanti-
fication of alternative polyadenylation sites from RNA-seq data.
Bioinformatics 34: 1841–1849. doi:10.1093/bioinformatics/bty029

YeC, ZhangX, ChenX, CaoQ, ZhangX, Zhou Y, LiW,Hong L, XieH, LiuX,
et al. 2020. Multiple novel hepatocellular carcinoma signature genes are
commonly controlled by the master pluripotency factor OCT4. Cell
Oncol 43: 279–295. doi:10.1007/s13402-019-00487-3

Yu H, Dai Z. 2020. SANPolyA: a deep learning method for identifying
poly(A) signals. Bioinformatics 36: 2393–2400. doi:10.1093/bioinfor
matics/btz970

Zhao Z, Xu Q, Wei R, Huang L, Wang W, Wei G, Ni T. 2021a.
Comprehensive characterization of somatic variants associated with
intronic polyadenylation in human cancers. Nucleic Acids Res 49:
10369–10381. doi:10.1093/nar/gkab772

Zhao Z, XuQ,Wei R,WangW, Ding D, Yang Y, Yao J, Zhang L, Hu Y-Q,Wei
G, et al. 2021b. Cancer-associated dynamics and potential regulators of
intronic polyadenylation revealed by IPAFinder using standard RNA-seq
data. Genome Res 31: 2095–2106. doi:10.1101/gr.271627.120

Zheng D, Wang R, Ding Q, Wang T, Xie B, Wei L, Zhong Z, Tian B. 2018.
Cellular stress alters 3′ UTR landscape through alternative polyadenyla-
tion and isoform-specific degradation. Nat Commun 9: 2268. doi:10
.1038/s41467-018-04730-7

Zingone A, Sinha S, Ante M, Nguyen C, Daujotyte D, Bowman ED, Sinha N,
Mitchell KA, Chen Q, Yan C, et al. 2021. A comprehensive map of alter-
native polyadenylation in African American and European American
lung cancer patients. Nat Commun 12: 5605. doi:10.1038/s41467-021-
25763-5

Received August 3, 2022; accepted in revised form February 28, 2023.

Long et al.

14 Genome Research
www.genome.org

 Cold Spring Harbor Laboratory Press on May 2, 2023 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


 10.1101/gr.277177.122Access the most recent version at doi:
 published online April 28, 2023Genome Res. 

  
Yongkang Long, Bin Zhang, Shuye Tian, et al. 
  
alternative polyadenylation from RNA-seq data with APAIQ
Accurate transcriptome-wide identification and quantification of

  
Material

Supplemental
  

 http://genome.cshlp.org/content/suppl/2023/04/28/gr.277177.122.DC1

  
P<P

  
Published online April 28, 2023 in advance of the print journal.

  
Open Access

  
 Open Access option.Genome ResearchFreely available online through the 

  
License

Commons 
Creative

.http://creativecommons.org/licenses/by-nc/4.0/
Commons License (Attribution-NonCommercial 4.0 International), as described at 

, is available under a CreativeGenome ResearchThis article, published in 

Service
Email Alerting

  
 click here.top right corner of the article or 

Receive free email alerts when new articles cite this article - sign up in the box at the

 https://genome.cshlp.org/subscriptions
go to: Genome Research To subscribe to 

© 2023 Long et al.; Published by Cold Spring Harbor Laboratory Press

 Cold Spring Harbor Laboratory Press on May 2, 2023 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/lookup/doi/10.1101/gr.277177.122
http://genome.cshlp.org/content/suppl/2023/04/28/gr.277177.122.DC1
http://creativecommons.org/licenses/by-nc/4.0/
http://genome.cshlp.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=protocols;10.1101/gr.277177.122&return_type=article&return_url=http://genome.cshlp.org/content/10.1101/gr.277177.122.full.pdf
http://genome.cshlp.org/cgi/adclick/?ad=57163&adclick=true&url=https%3A%2F%2Fwww.usascientific.com%2Ftipone-pipette-tips%2Fc%2F6%3Futm_source%3DCSHLAD%26utm_medium%3DBanner_TO%26utm_campaign%3DTO_CSHL%26utm_id%3DTO_Banner
https://genome.cshlp.org/subscriptions
http://genome.cshlp.org/
http://www.cshlpress.com

